Book/Dissertation / PhD Thesis FZJ-2022-03139

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mechanical properties of single and dual phase proton conducting membranes



2022
Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich
ISBN: 978-3-95806-645-8

Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment 584, IV, VI, 133 () = Dissertation, Univ. Twente, 2022

Please use a persistent id in citations:

Abstract: Dual-phase hydrogen permeation membranes, consisting of protonic and electronic conducting phases, shows great potential for high purity hydrogen production due to its high stability in harsh applications. Hydrogen-ion conductive perovskite phases (e.g. BaCe0.65Zr0.2Y0.15O3-δ) and electron conductive fluorite oxides (e.g. Ce0.85Gd0.15O2-δ) are promising candidate for this biphasic hydrogen transport membrane. Mechanical properties (e.g. elastic modulus, hardness, fracture toughness) of the membranes are essential parameters regarding the reliability of subsequent applications. These parameters are closely related to microstructural features such as grain size, phase distribution and defects (e.g. pores and microcracks). However, these relationships are not yet fully understood. Therefore, in this thesis, the effects of grain size, phasedistribution, pores and microcracks on mechanical properties are investigated for BaCe0.65Zr0.2Y0.15O3-δ and BaCe0.65Zr0.2Y0.15O3-δ-Ce0.85Gd0.15O2-δ membranes. Material preparation procedures (e.g. milling and sintering) are optimized to overcome the difficulty in material preparation.


Note: Dissertation, Univ. Twente, 2022

Contributing Institute(s):
  1. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)

Appears in the scientific report 2022
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Theses > Ph.D. Theses
Institute Collections > IEK > IEK-2
Document types > Books > Books
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-08-29, last modified 2022-09-07


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)